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SIGNIFICANCE AND EXPLANATION

\
WI
The study of metric upper semicontinuity (stability) is of

importance in optimization theory. The report discusses classical

and recent techniques of establishing metric upper semicontinuity

and provides their extensions. The metric upper semicontinuity of

intersections, the importance of which has been recognized only

recently, and several applications to optimization problems are

discussed.
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METRICALLY UPPER SEMICONTINUOUS MULTIFUNCTIONS
AND THEIR INTERSECTIONS

Szymon Dolecki+

A multifunction I from a topological space Y into a metric space

X, p) 1is called metrically upper semicontinuous at if foreach r> 0

Yo
there is a neighborhood W of Yo such that

(0.1) r'w CB(l"yo, r)

where for A CX, BA,r)= {x:B(x,r) NA # g}, B(x,r)= {v:p(x,v)<r} and

I'wW =UTry. Such multifunctions are frequently called upper Hausdorff semi-
vYeW

continuous (u.H.s.c.)

Classical methods of establishing metric upper semicontinuity and
their recent extensions (Sections 2 and 3) apply to certain classes of multi-
functions. But, what is really needed in applications (e.g., duality in
optimization theory, exact penalty methods, sensitivity) is metric upper
semicontinuity of the intersections of some multifunctions from
the above mentioned classes.

A dramatic suspense is caused by the fact that the intersection of
two metrically upper semicontinuous multifunctions need not be itself
metrically upper semicontinuous. This fact was recognized in [2] and a
way of getting around this difficulty in some applications was proposed in
[7]. In [15] Rolewicz gave a geometrical sufficient condition (for the inter-
section of u.H.s.c. multifunctions to be u.H.s.c) and applied it to some
open problems concerning continuously differentiable maps. His sufficient

condition however does not apply to some other important problems.
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In Section 4 we provide a general necessary and sufficient condition
for metric upper semicontinuity of intersections. As a special case it yields '
the Rolewicz condition and enables us to refine and to extend the results

of [15] (Section 5).

Section 6 provides an example of applications of our general condition

to problems of different nature than those at Section 5.

1. Some basic facts about metric upper semicontinuity.

Let (Y,68) be a metric space. A function a:R, ~ R+U{w} is

called a rate of semicontinuity at if

_Y_O’

(1.1) I‘B(YO. a(r)) CB(I‘YO, r) r> 0

A function f:R = R +U{<n} is called a modulus of semicontinuity at - Yo» if

(1.2) I‘B(yo,r) CB(I‘yO,ﬁ(r)) r> 0.

' is u.H.s.c at Yo» if and only if there is a rate q strictly positive

(there is a modulus P such that 1lim B(r)= 0).
r=0
We say that I’ is graph-closed at Yoo if

(1.3) I'yg= M cf TW

We B(Yo)
where B(yo) is a neighborhood basis at Yo and c¢f stands for the
closure. Note that I is graph-closed at Yo for each Yo in Y, if

and only if the graphof I' Q(I') = {(y,x):x e I'y} 1is closed. Itis a

simple observation that




1.1 Proposition

If I‘y0 isaclosed setand I is u.H.s.c at Yo then T
is graph-closed at Yo l
(Topological) upper semicontinuity implies metric upper semicontinuity, H

the converse statement being true under some auxiliary assumptions (see [6]).

! A multifunction T 1is said to be metrically continuous (Hausdorff

continuous) at Yoo if for each r> 0 there is a neighborhood W of Yo

such that (0.1) holdsand for y in W
(1.4) I"yo CB(T'y, )

Formulas (0.1) and (1.4) may be rephrased: h(ryo, I'y)<r, where
: h stands for the Hausdorff distance: h(Al, Ay)= inf {r: A< B(Az, r),A2 c B(Al' r}.
If there are a positive function B tending tc 0 with its argument
- . . anda 6> 0 suchthat B is a modulus of semicontinuity of I ateach vy

in B(yo, §), then I is metrically continuous about Yo In other words,

(1.5) h(Typ, TY,) < B(plyy, ¥5)), ¥y, ¥, € By, 8)

B

If B 1is linear about O

and (1.5) holds we say that T is (locally) Lipschitz at Yo If (0.1)

1

holds and, (1.4) holds forall y in W NI "X, thenwe saythat T

is domain continuous at Yor

We say that I is lower semicontinuous at (y,x) ata rate g,

PN 0L Y B M

if

(1.6) r~B(x, r) o B(y, alr)) -
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I 1is uniformly lower semicontinuous at (yo, xo) if there is a neighbor-
hood Q of (yo,xo) and a (strictly) positive function q such that

foreach (y,x) in QNAQI), I is lower semicontinuous at (v, X)

at the rate q.

1.2 Proposition [2]

T" is uniformly (at a rate q) lower semicontinuous at (yo, xo),
if and only if there are neighborhocods V of Xq and W of Y, such

that for each y in W the multifunction I‘( defined by

y)

(1.7) I‘(Y)y=1"y I“y)z=Vn1"z, z#4y

is u.H.s.c at y atarate q, where for some ry> 0 a(r) = a(r)
as regr;.
A simple but important generalization of this proposition we obtain
by restricting the multifunction T to its effective domain
r‘lx = {y: Ty# #}. Then, all the notions may be related to the metric

space r-lX: for example, I 1is domain lower semicontinuous at (y, x)

at arate q, Iif
rIB(x, 1) 2 By, ar)) N .

Observe, however, that metric upper semicontinuity when related to its
domain remains unchanged. The resulting theorem is obtained from
Proposition 1.2 by replacing lower semicontinuity by domain lower semi-
continuity and '"foreach y in W" by "foreach y in WAn 1""])(" .
The importance of domain semicontinuities was recognized by

Levine and Pomerol [11].
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1.3 Example

Let X be a Banach space and let {f be a nonzero continuous

X

linear formon X. Let I':R®~2° be given by: I'(r,, r,) = {x: f(x)=1p, £(0)

I" 1is not lower semicontinuous, but it is uniformly u.H.s.c at

each point of its domain {(rl, I, )iy = rz} .

1.4 Corollary

T is uniformly (domain) lower semicontinuous at (yo, xo) at a

rate g, if and only if there are neighborhoods U of Xq and W of

Yo and a number Iy > 0 suchthatfor x in V andfor y in W (in
w nrix)

(1.5) dist(y, l"-lx) < qr) =% dist (x,Ty)<r,r < Iye

Proof 1t is enough to prove '"'non domain'' part of the corollary. We

rephrase the conclusion of Proposition 1.2 foreach y in W for r< o»

(1.9) TB(y,a{rh)n V CB(T'y, r) -

Let x bein TIB(y,da(r)) NV. Equivalently, x isin V and I‘_lx
intersects B(y, d(r)). In other words dist(y, r-lx) < q(r). On the other
hand x isin B(l'y,r), whenever B(x,r) meets Ty, or

dist(x.I‘Y) <r.




2. Where does one encounter metric upper semicontinuity

The Banach open mapping theorem states that if a continuous linear

operator F maps a Banach space X onto a Banach space Y, then the
multifunction F_l:Y - ZX is lower semicontinuous at (0, 0) at a linear
rate. Linearity implies uniform lower semicontinuity everywhere, hence

I‘_l is metrically continuous, in fact, Lipschitz. More generally, if

T:Y - ZX is a multifunction with closed convex graph such that

1

Yo ¢ Int T "X, then for every x in I"yo, I 1is lower semicontinuous

0
at (yo, xO), thus, by convexity, uniformly lower semicontinuous at
(v g Xo)L16})-

Consequently, in view of Proposition 1.2, the multifunctions I‘(y)
defined in (1.7) are u.H.s.c (this property we call sometimes & - semi-
continuity). Moreover, if Yo € Int I‘—IX, then all graph closed convex
multifunctions which are ''close' to I' are lower semicontinuous at (YO,XO)

at a uniform universal rate (a perturbation theorem [2], sez [10] for a special

case). This nice property of families of graph-convex multifunctions was used in

2

proving uniform lower semicontinuity:':of non-convex multifunctions (that can
be approximated by families of graph-convex multifunctions) by Lusternik
[12]): let F be a continuously differentiable (about xo) mapping into a

Banach space Y such that F'(xO)X=Y; then F~!

is uniformly lower
semicontinuous (at a piecewise linear rate) at (F(xo), xo). Extensions of
the Lusternik theorem were proposed by Ioffe-Tikhomirov [9] , Robinson
[14], loffe[ 8] and the present auther [2][3] .

In this type of results, an approximation theorem [2] (an

extension of the Pt&k theorem [13]) is very useful. We slall need

only its special forn:

) ‘.ctually Lusternik proved a special consequence of uniform lower semi-
continuity.




Let I' be a multifunction from a metric space into a complete

Oetric space N. Suppose that there are a neighborhood Q of (yoxo) ’
numbers  r 0, 0+ suchthat for (y,x) in QN G(T)

i

(2.1 B(T 'B(x,1, 1) DB(y,br), 0<rsr, .

Then I is uniformly lower semicontinuous at (yg, xO) at arate q
such that a{r) ~ (b= Mr,r= 1 -

Theorem 2.1 may be related to the domainof I'. Then (2.1) becomes

1

(2.1 B(T'B(x,r), ) DB(y,br) I r7IX, 0<rar

0

and the thesis is that of uniform domain lower semicontinuity. The appli-
cability of Theorem 2.1 appears through the following scheme: Let X be
a complete metric space, Y,Z Banach spaces, TI':Y = ZX a multi-
function, {I' (y,x)} a family of (graph ~)convex, closed multifunctions

from Y into Z (suchthat Oe¢ I (y,x)0 foreach (vy,x)).

7
Y
-
0
’+j z

Consider the following assumptions: there are numbers 0<2<1 and

¢ > 0 such that for each 3> 0 there is an ro > 0 such that

(2.2) B(I‘_IB(x,r),w,‘)r) Dy + r'(y, x)-l B(0,ar) N B(O0,cr)




for ||x-x0||<r0,Hy-y0||<r0ye1‘-lx,r$r and for each €

0

there are a neighborhood V of (yo,xo) and v, such that

1

(2.3) B(T (y,%)7'B(0,ar) N B(O, cr), &) DT (yy,x,) "B (0, ar) 7 B(0, cr)

Such a family {r (y,x)} 1is called an image nearly inner approximation

of I' at (yqxy) (inia) (see[2] [7] [3] for special cases)

2.2 Proposition

Let {1'" (y,x)} beaniniaof T at (yo, xo). If
(2.4) OeIntT (yo,x,) 1X
. 0’ 0 ’

then TI" is uniformly lower semicontinuous at (yo, xo) at a piecewise

linear rate.

Proof
It follows from the Baire category theorem and from the convexity of

1'" (yo, xo) that there are b0 and r such that
r (yo,xo)-lB(O, ar) O B(0, byr), rsr

Let bl> €> 0. On setting bl= min(bo,c) r, = min (ro rl) we have,
in view of (2.3), that

B(T (v,x) 2B(0,ar) A B(O, cr), &r) 3 B(O, brhrer,

for (y,r) in V.

[46]

r
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Now, we choose ¥ suchthat 9 + € < b, and in view ¢

1
(2.2) we obtain

B(r "1B(x, 1), (% + €)r) D B(y, byr)

for ||x- Xol | < Ty [y - Y0| < I,y e r‘—lx,r‘rz. In virtue of Theorem
2.1 the proof is complete.

The above scheme embraces various convex approximations of multi-
functions (continuous differentiability and more generally strict differentia-
bility, Levitin - Milyutin - Osmolovskii approximation (see [2]), their
combinations and extensions [3] . We are going to present two concrete

results, not most general, but having some important implications.

2.3 Example

Let G:X - Y be a continuously differentiable mapping about a

point x_, of a Banach space X andlet D be a closed convex cone

0
in a Banach space Y. Consequently for each ¥ > 0 there is Ty >0
such that
(2.5) | |G(x + h) - G(x) - G(x)h| | < 3| {h[],

for ||x-x0|| < g, | {h|| <ry. Define
(2.6) ry= {x:y ¢ G(x) +D}

and note that




(2.7) r'y,x)z= {h:ze G(x)h +D} Ve r-lx
constitutes an image nearly inner approximationof T at (G(xo), ,\'0)
As a corollary of Proposition 2.2 one has
2.4 Proposition ([14])
If
(2.8) G‘(xo)x+ D-=Y,
then I of (2.6) is uniformly lower semicontinuous at (G(xo), xo) at

a piecewise linear rate.
Let (G be a family of subsets of a Banach space X. A family

' of closed convex cones is said to be uniformly tangent to {6} at X4

if for each € > 0 there is an r0> 0 such that for x< 3A (boundary

of A), |ix - xol, <ry,, Ac@Q there is an element A'(x) of
G such that for |iv-x|| < r,, one has
t
(a) if v isin A (x), then
dist (v,A)< € ||v - x||
(2.9)
(b) if v isin A, then

dist (v,A'(x)) < ellv-x]| -

2.5 Proposition (see [3])

Let I be given by (2.6), r'(x, v) by (2.7) and suppose that

{2.5) holds.

.
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1z

The family  (x + T (v, X)(0)} is uniformly tangent to {T(v)} at

2y
Proof

It follows from Proposition 2.4 and Corollary 1.3 that there are
numbers k 0, Ty 0 suchthatfor 1iv - X! <r0, A Yo! ? <r0
(2.11) dist(v, I z) < k dist(z, r‘lv) .

Let £ =-kY andlet v bein x+ r'(y, x}0), {y ¢ G(x) + D)} equivalently
0« I"(y, x)—l(v - X) = G'(X)(v - X)+D thusthereis d in D such that
0: G(x)v-x)+d andinviewof (2.5) and (2.6), G(x) isin

1

B(I' v, 3l v - x|!), hence recalling (2.11)

dist (v, T(G(x))) < k5 | {v - x[ |

Let v bein TI'G(x). Thusthereis d in D suchthat G(v) +d = G(x)

and by (2.5)
G (x)v - x) +d]| <ol lv- x|

By (2.8) and the continuity of G'(x) there is anelement w of X such
that G()(v-w)=0 and  w-x|sk||G&NV-x)+d[| < kd{lv=-x|i.
(In fact % may be taken the same as in (2.11)).
The follewing re-ult iz that of uniform lower semicontinuity of a ;

multifunction T :Y = 27, whore Y 1is a Banach spaceand S is a

closed subset of a Banich pane adraitting a uniform tangent family. This




result generalizes Proposition 2.4 and is very close to that of Ioffe [ 8,
Theorem 2].

In our case (in comparison to [8]) the set S will be rore specific,
the multifunction T more general, the sufficient condition (controllabil:i+:
much easier to verify and the conclusion stronger (uniformity). Let G be =
continuwously differentiable mapping fram X into a Banach space 2, D a ¢li=.

convex cone in 2 such that

(2.12) G'(xgX +D = Z
Set

(2.13) S={x:0¢ G(x)+ D}
Denote by

(2.14) T(x)= {v: 0e¢ G(x)v + D}

Let F be a continuously differentiable mapping of X into a Banach spac.:

Y, C aclosed convex cone in Y. Consider the multifunction I':Y - 2S

defined by

(2.15) Ty={xe S:ye F(x)+C}

2.6 Theorem

If (2.12) holds and
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)

(2.16) Fi(xiT(x) +C = ¥,

then the multifunction I of (2.15) is uniformly lower semicontinuous at

(F(xo), xo) at a piecewise linear rate.

Proof
We shall show that the multifunction F'(y, X): Y~ 2X defined by
(2.17) I*'(y, x)z2=1{he T(X): 2z ¢ F'(x)h +C} for vy e rl.

is an image nearly inner approximation of T at (P(xo), xO). It will be
then enough to apply Proposition 2.2, since our assumption in view of
(2.17) implies (2.4). It follows from Proposition 2.5 that {x + T(x)},

X e S, 1is a family uniformly tangentto S about x Consequently,

0"
there is a family of functions {gx}

(2.18) £t X +T(x) =8

such that foreach 129 > 0 there is an ry> 0 such that if Hx-xo‘, ir,

and Ilv-xH(ro, then

e ) - vi| & v - x|

Therefore, for r & Iy

gx(B(x, r) A x+T(x)) C B(X,(1+9Yr) N S

There is an n £ To such that in B(xo, 3r1) the mapping F 1is Lipschitz




14
continuvous with constant 1. Hence for each v in B(x,r) ~ x + T(x)
there is an elemoent gx(v) in S 7" B(x,(1 + &)r) such that

T(v) - T, (v)) &7 wv-x{i or
(2.19) B(T(B(x,(L + 8)r) ~ 8),0r) > F(B(x,r) ~ x+ T(x)) .

On the other hand, therc is an r, €£r, such that for

2 1

E]x-xoiisrz,"lv-xlisrz

R - FE) - F v = x| < 0| v - x| g
in particular this istrue for v -~ x in T(x), thus
(2.20) B(F(B(x,r) n x + T(x)),9r) > F(x) + F'(x) (B(0,r) » T(x)).
On recalling (2.15) and (2.17) we conclude that

(2.21) B(I‘_IB(x, r),23r) oy + r"(y, x)-lB(O,%)
2 2 -1
for r =5, 01x-xp | <=,ye T %, hence (2.2) is satisfied.
We shall show now that the family {T(x)} is continuous in the
following sense. Foreach € - 0 thereis r 0 such that for
X3 =%y - <r! |x2 - xO} | <r onehasthatif he T(x)), then
Aist(h, T(xz)) <niithl|. Infact, foreach € 0 thereis r0> 0 such

that, for X X, in B(xo,ro)

|1G'(x)h = G'(x,)h| | = €] |n|] .




Tot he T(x). Thereis & in D such that G!(xl)h +d=0. On

1
tho other hang,

e ' 1 _1 ) ' _
dist (0, T (G(xz), xz) h)s |G (Xl)h +di =
(2.22) = G(xph+d -G (x,)h-d;; 8

< e hl’

'
By the uniform lower semicontinuity of the family T (y, x) about (yo, xo)
thereare m° 0 and ry rl‘ 0 such that

dist(h,r'(G(x X,)0) £ m dist (o,r'(G(xZ), xz)‘lh) < me, hil;

2)’
(the last estimate following from (2.22). Set mé€& £rv . Consequently,
X = B(0,r) N T(x) and x - F'(x)(B(O, r) n T(x)) + C are continuous multi-
functions and (2.3) is satisfied.

We shall now provide another condition equivalent to (2.16) combined

) with (2.12). Let JF:X =Y XZ be given by
F (x) = (F(x), G(x))

and let ¢=Cx D.

2.7 Lemma

Combined, conditions (2.12) and (2.16) are equivalent to 1

g

(2.23) s(xo)x+c;YxZ




Proof

It follows from (2.23) that foreach y in Y thereis an x
such that (y, 0) € (P'(xo)x + C, G'(xo)x + D) what amounts to (2.16). i
Similarly, (2.12) follows immediately from (2.23).
Suppose (2.12) and (2.16) and take (y,2)e YXZ. By (2.12)
there is an x suchthat ze G'(xo)x +D. By (2.16) there is an X
such that O G'(xo);{' +D and vy - F'('xo)x € P'(xo))? + C. Consequently

zedm&m+§ﬂi)am yefm&m+%+c.

3. On farther extensions

Proposition 2.4 may be generalized by replacing the cone D by a
cone-valued multifunction.

Let G be a continuously differentiable (about xo) mapping from
a Banach space X wvalued in a Banach space Y. Consider, as well, a
multifunction

C:x=-2Y,

such that for each x, Cx is a closed convex cone in Y with the
vertex at 0. We assume that for each €3> 0 there is a neighborhood
Q at X, such that for every x from Q andforeach h from Cx,
there exists an h(x) | |h(x)||{ = ||h|| in Cx such that

(3.1) |[{hx)-h|| = €|[n]] .




;é
Rephrasing, for each € > 0 there is a neighborhood Q of X, such
that foreach x in Q i
- - . (3.2) B(Cx nB(0,r), €r) O Cx0 n B(O, r), r> 0

. Define
(3.3) Ty={x:v e G(x)+Cx}

The multifunction

(3.4) fx,y)z= {h:ze G (x)h+Cx}, ye I ix

is an image nearly inner approximation of I at (xo, G(xo)).
- . Indeed, (2.2) (with c = +«) follows directly from the definitions.
In order to check (2.3) let ve I"(yo, xo)-lB(O, r) N B(0,r); thereare g
in B(0,r) and h in Cx0 such that v = G'(xo)g + h. Certainly
[1nl| < ||vl]+]| |G'(xo)| l'|lg]|, thus h 1isin B(0,(l + k)r) where
k> | IG'(xo)I | . There exists r,> 0 such that
if | Ix0 - x| ¢ r, thenthereisan h(x) in Cx such that (3.1) holds.
On the other hand, by the continuity of G'(-), there is an n<r, such

that

16" g - G'txglal| <ellgll as [Ix=xll<r .

! -
Therefore the element w= G'(x)g +h(x) of T (y,x) lB(o, r) satisfies

|lv-w|| < €(2 + k) and by convexity there is 2z in I"(y, x)B(0, r) N B(0, r)




suchothar Vo= “2¢(2 + k)r. Therefore for the discussed multi-

‘denotions (2.3) nolds where a-=1, ¢ 1, € isreplaced by 2¢(2+ k).
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Thecrem 3.1

(3.5) G(xO)X+CxO-—Y,

then the multifunction (3.3) is uniformly lower semicontinuous at (F(xo), xo)
at a piecewise linear rate.

Another way of generalizing results of type of Proposition 2.4 or

Theorem 2.6 may become a temptation, when one observes that if for a
continuous linear operator F (from a Banach space X into a Banach
space Y) we have that FX is closed, then the multifunction F—l is
u.H.s.c (domain Lipschitz continuous). This is due to the fact that l"-1
is uniformly domain lower semicontinuous (its domain FX is itself a
Banach space, hence we may apply the Banach open mapping theoremj.

However, an attempt to replace, say (2.8) in Proposition 2.4 by

an assumption that G'(xo)X +D is closed, may be discarded quickly by
noting, that even for D = {0} the property "G'(x)x is closed" is
unstable (see e.g. [10] p. 57).

There remains however a possibility of generalization, when

'
G (xO)X is of finite codimensijon {thn property which is stable) we eliminate

this possibility too.
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Example 3.2

Let X be a Hilbert space which orthonormal basis is denoted by
{oijf { - Let G:X-~ RZ be given by

2
® ® X,
e - A W _ v L
where gl(x)- X (where x = ) Xiei) and gz(x)_ x1+ o1 Of
i=1 i=2
1
course, G is continuously differentiable and G (0)X has finite co-

dimension. But the multifunction G-1 is not domain lower semicontinuous.

To see this observe that G_l(o, 0)= {0} andfor r<o

2

G—l(r, 0) = {x: XFr= -

i

n {--8

x
-ii } thus for |r| arbitrarily small there are
2

x in G-l(r, 0) that do not belong tc  B(0, 1).

3.3 Lxample

Modifying Example 3.2 set g2(x) =x; + ) x; In this case the
i=2

dimension of G'(O)X is one, but G"1

is uniformly domain lower

semicontinuous (at 0) (for details see Example 4.6).

T
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4. General conditions on metric upper semicontinuity of intersections

Let A AZ be subsets of a metric space (X,p). We say that

1’

A1 and AZ separate decisively, if for each € > 0 there exists a

6> 0 such that

(4.1) B(A1 n AZ’ €) DB(AI, o) n B(AZ, 5)

When Al and AZ do not intersect, we understand that
B(A1 A AZ’ €) 1is empty for each €; then condition (4.1) becomes that
thereisa 6> 0 such that B(Al‘ §)n B(Az, §)=48.

When A, is a subset of AZ’ then the sets separate decisively

1
and & maAay be taken equalto €.

4.1 Lemma

Let X and Z be two metric spaces, p a mappingof X onto
Z suchthat p and p_l are uniformly continuous. If APA2 separate
decisively, then p(Al), p(Az) separate decisively.

Proof
Let 0> 0. Thereis € > 0 such that for each x,
B(p(x), ¥) D p(B(x, £)). Consequently

B(aA)N P(A,), 3) = B(p(A) NA,), 9) DpBA; N A, €) -

In view of (4.1) and the above inclusion, there is & such that

B(p(Ay) N P(B,), ¥) O p(BA,, §)) N P(BEA,, 6)) -




AW IR

By the uniform continuity of p"1 there is a ¢ such that
-.-1 - -IB
B(A, 6) =p "B(p(A)), £ ), p(A,, 6) P B(p(A) &)
thus
B(p(A,) N p(A,), 3) D B(p(A)), £) N B(p(A,, £)) -

4.2 Lemma
The sets A1 and AZ separate decisively, if and only if there
exists a function h: ]R+ X ]R+ - ]R+ U{+~} continuous at (0, 0)

and h(0, 0) = 0 such that
(4.2) dist(x,A) N A,) < h(dist(x,A,), dist(x,A,))
Such a function h is called a modulus of separation.

Proof

Assume that such a function exists and set € > 0. By the contin-
uityof h at (0,0), thereisa &> 0 suchthat h(rl, r2)< e, |if
r1< 6§ and r, <§. Ifanelement x 1isin B(Al, 8)n B‘AZ’ §8) (or
equivalently if dist(x, Al) <6 and dist(x, AZ) < §), thenby (4.2)
dist (x, Al n AZ) < g, hence it belongs to B(A1 n Az, £).

On the other hand, if Al and AZ separate decisively, then for

each n21 thereisa 5n> 0 such that

1
(4.3) B(A; N A, <) DB, 6 )N BA,S ) -




W icfine the functions hn *RyXR =R U {+=] by sottino

1 ) .
if r, 6,1, 08
n 2 n
(4.4) )= Y '
+o, otherwise

ana <ofine
{4.5) h(rl, 1‘2) : 1nf h (rl, r,) -

The function h of (4.5) satisfies the listed properties. (It is obviously

continuous and 0 at (0, 0).)
Take an arbitrary x. If max (dist (%, Al)’ dist (X’AZ)) = 1, then

by (4.4)
(4.53) h(dist (x,Al), dist (x,AZ)) =+ o
and (4.2) is fulfulled. If

) < max (dist (x, Al), dist (x,AZ)) < 6n

n+l

then by (4.3)
. 1
dist (x,I-\1 f AZ) ('H ,

thus h satisfies (4.2).

Let us give some attention to those pairs of sets AI'A that do

not scparate decisively. This means, by definition, that there exists an

; "o P and a sequence {xn} such that
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1
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(4.7) hén dist (= Al) = lién dist (Xn’ AZ) =0

. 1
1—-—cl+cn of Al by 1—'\/1—;.

. 2 [ -X
Lt X - R%, Aj- ((x,v):y=0}, A,={(xy):ry=c"}. The
interscction of these sets is empty but for each & the sets B(Al’ 6)

and B(Az,é) meet. The sequence {(n, 0)} satisfies (4.6), (4.7).

4.4 Example (compare [7])

Let X be a Hilbert space which orthonormal basis is denoted by

{e_} . Let

and

The only common clement of these sets is {el} . The sequence

{el + is distant from e, by one. On the other hand, it is a

e
n'n:1

subsect of A2 and for each n e1 + ch is distant from the element

1
n

In first of the two examples the sequence satisfying (4.6) (4.7) is

unbounded; in the latter example it is bounded. Nevertheless in both cases,

i R R U O L RO D BPRUR SR o &5 < R s s b i T Sz e, DI sl Nl
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it is not compact. Compactness implies decisive separation, but is not

necessary.

4.5 Lemma
If one of the sets Al’ AZ is compact and the other closed, then th.

sets separate decisively.

Proof
Since X is metric it is enough to consider sequential compactness.
We shall prove that no sequence can satisfy (4.6) and (4.7). Indeed,

assume that Al is compact and there are an ¢ and a sequence {xn}

0

satisfying (4.6) (4.7). Consequentlythere are sequences {yn} in Al’

{zn} in A, and {Bn}, énl 0 such that px,v,) <6 and

r p(xn, zn) < 6n' There is a subsequence {yn } convergent to an element,
k
say y,, of A, thus {xnk} {znk} converge to y_, too. On the other

hand, Yy, isin A2 (in view cf the closedness of AZ)' This contradicts (4.¢ ..

4.6 Example

X stands for a Hilbert space, like in Example 4.4. Put

[ -] - -]
2
A = { te €X: t° e 1}
1 zn=1 nn Zn= 1 B
and
-}
A, = {zn=1tnene X:t) = 1}
R The only common point is {el} . These sets separate decisively. To show
”3 ) i Y ’1@?. S ] o , . N T
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that, denote by r" = Z t. . Then A1 is included in

-]
{Z te e X:rsl,tlle-rz}
n=1

Fig. 1

We infer, that if dist (x, Al) + dist (x, AZ) <{£, then dist(x,A, N AZ) <s.

Inordertorelate s to { we observe that

w
w
[}
-

+2 ~ 2

feon

thus
(4.8) s=~](2+l)£ .

Therefore for € > 0 we maypick &= (-Ze-)2 if it is less than 1.
The following theorem shows how decisive separation characterizes

the metrically upper semicontinuous multifunctions, the intersection of

FRFSITU N
y?

which is also metrically upper semicontinuous.
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4.7 Theecrem

a) Let I‘l, I, be multifunctions from a topological space Y into

subscts of X, u.H.s.c at Yo If r and T,y separate

1¥0 270
decisively, then the intersection ) ~Tr, is u.H.s.c at Yo ©

AMoreover, therc is a modulus of semicontinuity 3 of I} n r, such that

(4.9) B (r) = h(B(r), B ,()),

where h 1is a modulus of separation of r‘lyo and I‘Zyo, Bi is a

modulus of semicontinuity of I‘.1 (at yo), i=1 2.
b) 1f the sets Al and A2 do not separate decisively, then there are

a (metric) space Y and u.H.s.c (at yo) multifunctions I‘l,l“?_:

Y- ZX , such that

A, T

Wo = Ay = A

Yo~ 20

the intersection of which is not u.H.s.c at Yo *

Proof_

a) Let €. 0. Thereisa 6. 0 suchthat B(I“ly0 N I‘Zyo, £)

::B(I‘lyo,é)nB(I‘zyo,&). Since I‘I,I‘2 are u.H.s.c. at Yoo there are

neighborhoods WI’WZ of Yo such that I‘IW1 CB(I“lyO, &) and

1"?_W2 ’ B(l‘zyo, 6). Consequently (I‘1 A I‘Z)(Wl OWZ) CB(I‘lyo N I‘Zyo, £).
To show (4.9) assume that x is in (1‘1 N I‘Z)B(yo, r). Thus,

by semicontinuity dist (x,I'yy,)” B)(r) and dist (x, I‘Zya< B,(r). In

view of (4.2) we may set f(r) = h(ﬁl(r), Bz(r)) .
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= b) Suppose that Al and A2 do not separate decisively and let
{xn} be a sequence satisfying (4.6) (4.7). Define Y=[0,-») and
1 1. -
r‘ln—I‘Zn_{xn} ,n=12...
r'.0=A,, T_,0=A

ry=r,y= g, otherwise.

So defined multifunctions are u.H.s.c. at 0, but their

intersection is not.

4.8 Remark

Let A A2 be given. If Al is a subset of a ball, say B(xo,ro)

1’

and for r1> ro the sets Al

then Al and A2 separate decisively. Moreover there is @ modulus of

separation of the latter equal to that of the former for small LT, -

and AZ 0 B(xo, rl) separate decisively

4.9 Remark
Let C1 CAl, C2 - Az be such that C1 n C2 = Al n A2 . If
Al and A2 separate decisively, then Cl and C2 too (with the same modulus).

4.10 Remark

A decisive separation property has itself a semicontinuity character. For

two given subsets Al' A2 of X define the multifunction A : lR+ - ZX by

A0=A ﬂAZ

1

T

Ar = B(A, r) N B(A,,r), r> 0
AI'AZ separate decisively, if and only if the multifunction A is metrically

upper semicontinuous at 0.

S




5. Rolewicz theorem and localization of metric upper semicontinuity.

In [15) Rolewicz introduced, what we call, c-stars and d-convex
sets, and proved that for two u.H.s.c multifunctions 1“1, 1"2 for which

I‘lyo isac~-starand I is d-convex (c:> d), I‘1 rr is  u.H...

2%0 2
at Yo His proof amounts, in practice, to demonstrating that T'Yo ant

r separate decisively.

2¥o
Let X be a normed space. A subset A of X is called c-conv:
at x, (eA), ifforevery x in A andforeach 0<a <1 there oxist:

X, in A such that

(5.1) l|xa-(ax+(1-a)x0)HS(l—a)c‘,}x-xoga
Of course, every convex set is c-convex for each ¢ > 0 at each point.

sets is c-convex at x, .

The union of c~-convex (at xo) 0

5.1 Lemma ([15])

Let F:X -~ Y be continuously differentiable about Xq and such

that Pl(xo)X =Y. Thenforeach c¢> 0, there existsaball Q (centered

at x such that the set

o)

{x:F(x)= F(xo)} nQ

is c-convex at xo.

A subset A of X is called a c-star at Xgs if foreach x in

A the convex hull of




BRI

o

t.)

(5’2) B(xoncllx-xoll)u {X}

———— e

is included in A.

It is a simple observation that A is a c-star at X0 if and

only if foreach x in A

(5.3) U Blax, + (1 - a)x,ac[lx-xoll)c A
0<ax<l

is c-convex at x_.

Certainly, each c-star at X 0

5.2 Proposition

Every c-star at x. not equal to the whole space is bounded.

0
Proof
Suppose that A 1is a c-star at xo and there is a sequence
{xn} such that | Ixn - xol | 2 n.

Then by (5.3) foreach n=12,...
B(xy cn) C B(x, ol [x - x,|]) CA,

hence A =X.

We shall give a simpler proof of

5.3 Proposition [151

Every bounded convex set A for which x,. 1is an interior point, &’

0

is a c-~star at xO .
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Proof
By assumptions there are numbers 0. r< M such that
B(xo, r) AT B(xo, M). We set c-= f\r-/[ and observe that for cach

x in A Blxgpc x- X )z B(xy cM) CTA. By convexity of A the
convex hull (5.2) is a subset of A.

We note that for a family {Ai} of c-stars at X, U Ai and
iel iel
. A, are c-stars at x,. Consequently, if {Ai} is a family of convex
iel
sets such that B(x.,r) C A, C B{(x,, M) foreach i, then U A, isa
0 i o jer 1

r
M star at XO'

5.4 Theorem (Rolewicz [15])

Let 0<{d<cel. If l—\1 is a d-convex set at X0 and A2 is

a c-star at x then A1 and AZ separate decisively and there is a

0}
modulus of separation of the form

| (5.4) h(rl’r2)= in e (r:L + rz),

where m dependsonlyon d and c.

The Rolewicz theorem is especially useful in localization of metric
upper semicontinuity. It is known [7] thatif I is u.H.s.c at Yo
(with modulus pB) then foreach €3> 0 and each neighborhood Q of

xo(eryo), there is a neighborhood QOC Q of x, suchthat Qo nr

0
is u.H.s.c at Yo with modulus (1 + €)8. The following example shows

that QO cannot in general be replaced by a ball about x

0.
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5.5 Lxample

Let E  be a (nonseparable) Hilbert space, {e_} a family of

‘ r're R

orthonern.al vectors in E, X a characteristic function of {rer}re R’
A={(e,r)e EXE: 0 r £X(e)} .
Equip E X R with the norm

fite,n)| | = sup(ileil, Ir])

and definc I' : E - ZE xR by

Iy =A+ (y,0) .

Of course I is closed-valued continuous multifunction, but no multi-

function A of form
cf B(O,R) N T B(O,R)y n T

is u.H.s.c at 0. We shall show this factfor R€1. Let 0<€ < %
and pick an r suchthat R<r<R + %— . The element x= ((r- € )er, R)
isin A(-ze ) and x/B@a03). As [[-eell=€ and & was
chosen arbitrarily A 1isnot u.H.s.c at 0.

| It follows immediately from the definition that foreach r> 0 the

Therefore, if I is an

ball B(xo, r)(for cf B(xo, r)) is a l-star at X+
u.H.s.c multifunction (at yo) and r‘yo is d-convex at X, with
d-l1, then B(xo, r) " I (and cf B(xo, r)nl) is u.H.s.c at Yo in s

virtue of Theorems 5.4 and 4,7.

e T O




5.6 Lemma

Let {A'(x)}XE X be uniformly tangent to a family ¢ at Xq

Foreach d> 0 and every neighborhood Q of X, there arc
neighborhoods QOC Q1 CQ of X such that for each A of ¢ sucl.

that An Qo/ﬂ the set AN Q1 is d-convexateach v in A~ QO .

Proof
Fix d> 0 and choose a neighborhood Q of Xq Let € %

and let Ty correspond to € in (2.9) (2.10) and be such that
r 2r

- 9 - -0
B(xpTy) Q- Set Qq=B(x, 3 ) Q)= Blxg —37) -
Let v bein QonA for A in G andlet x bein AHQI.
By (2.10) there is v in A'(x) such that

(5.5) Hvy-vil=s ellv-x||

The element (1~ )v1 +ax liesin A'(x), thus there is an x, in A

such that

%, = (ax+A-awp|| & eQ-a)||v) - x]]
what combined with (5.5) implies
(5.6) llx, ~(ex+-ap)|| € Q-a)ed+e)l|v-x]]

We estimate, taking into account (5.5) and (5.6)

lx, ~(ax+(1-a)w|| € Q-a)e@+e)||v~x|]|
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which is less than (1 - e)d||v - x||, if we assume that d = 3. The
proof is complete.

The above lemma enables us to prove the following result concerning
the Lipschitz continuity of the multifunction I (2.15), ©': Y = 2S where

where S is defined by (2.13) under condition (2.12).

5.7 Theorem

If (2.16) holds, then there are a neighborhood W of Vg, @

neighborhood Q of x
1

0 and numbers c,r0> 0 suchthatfor x in @G,

xNW and r< r. the multifunction

for y in T~ 0

B(x,r)N T

is Lipschitz continuous about y with constant c.

Proof
Let d<1. Inview of Lemma 2.7 and Proposition 2.5 applied to

the multifunction

A(y,z)={x:(y,2z) €3 (x) +C}

the family {A(y, 2)} possesses a uniformly tangent family at x

(v, 2) 0’
A fortiori, the family I'y = A(y, 0) has a uniformly tangent family at X+

In virtue of Lemma 5.6 in every neighborhood V of X there are

neighborhoods QOCQICV of x such that foreach y and x in

0
I'ynf QO' Tyn Ql is d-convex at x.

Choose positive numbers Ty and o such that B(xo, Zso) CQO’




Let % bein Q - B(x
r-s

0 so) and let r= Iy - The ball B(x,r)

- star at cach v in B(x,s). We choose s so that

3y

= ?—Q to guarantee that B(x,r) is a c-star at such v.
0
On the other hand, by Theorem 2.6 there is a neighborhood W of

Yo such that for every y in rl

x N'W there is a neighborhood Wy
of y with r‘_lG(x, s) D Wy, or equivalently such that for each =z
in Wy, 'z " B(x,s)# @. From the first part of the proof we know that
rzn Ql is d-convex at each v in Tz N B(x, s).

Now each ball B(x, s} in consideration has the property that
B(x, s) + B(0, o~ so) - Ql’ thus we conclude on recalling Theorem 5.4
and Remark 4.8 that there is a function h of the form (5.4)<'for
r < 'y~ So which is a modulus of separation for each B(x,s) and Tz
described above).

We conclude that the same is true about the sets B(x,s) n S and
I"z (Remark 4.9)

From the assumptions of our theorem in view of Theorem 2.6 and

Proposition 1.2 there is a neighborhood V of x, and a neighborhood

0
W  of Y such that for y 1in W the multifunctions (1.7) are metrically
upper semicontinuous (at a universal piecewise linear rate). We may assume
that V that appears at the beginning of the proof is equal to this just

introduced.

On the: other hand, y = B(x,s)N” S is a constant, thus metrically

R v

upper semicontinuous multifunction (with the rate q(r) = = ). \




;

Therefore, by Theorem 4.7 (a), the multifunction ' ™ B(x,r) is
u.H.s.c at cach element of Wy.

The uniform linear rate of semicontinuity (of all these multifunctions)
at all points implies Lipschitz continuity.

It is of great importance in optimization to establish the Lipschitz
continuity of so-called primal functionals {2] [15] [7]. Let { be areal-
valued functionon S (2.13) locally Lipschitz continuous about Xqe The
primal functional of (f,I") restrictedto Q is the real-valued function

on Y:

fr‘Q(y) = inf (f (x)
xelyNQ

5.& Corollary

Under the assumptions of Theorem 2.6, there are neighborhoods W

of Yoo Q of X and a number I, such that for each x in Q for
1

XA W andfor re€r the primal functional of (f,T)

every v in T~ 0’

restricted to B(x,r) is locally Lipschitz at y. There is a universal

Lipschitz constant for all such primal functionals.

Proof

Apply Theorem 5.7 together with [5].




6. Decisive separation of weakly separated sets

The sets AI’AZ’ the decisive separation of which we discu-7 1

this section, have the property

(6.1) xe A NA,=> xe 0A NO3A,

where 9 stands for the topological boundary. We shall consider sets c:

the form
(6.2) A = {x: f(x)% 0}, A, = {x: f,(x)$ 0},
where fl’ fz are real-valued functions on a Banach space X.
Property (6.1) links the study with optimization theory; cecisive
separation of sets satisfying (6.1) is crucial in sensitivity theory, a

branch of optimization ([4]).

6.1 Proposition B

Suppose that the functions £ are continuous and the sets (6.2)

v
satisfy (6.1). Then if the set

nA

is nonempty it is the set of all the global solutions of the problem

(6.3) f(x) = inf, £,(x)% 0




]

Proof

If x isin AZ’ then fl(x)z 0, because otherwise by the

continuity of f1 there would be a neighborhood Q of x such that

QC {v: fl(v) <0} CA contradicting (6.1) . Since A, n A, is

1’ 1
nonempty, there is an element X of AZ such that fl&)s 0; conse-

quently inf fl(x) = 0 and every element of A

f Az is a sclution of
fz(x)‘ 0

1

(6.3). On the other hand every solution x of (6.3) satisfies fl(x)s 0

and fz(x)s 0.

6.2 Corollary

If the functions f£,,f, are differentiable and the sets (6.2) satisfy
12
Y. then for each x in Al n A2 there are positive numbers
Al’ *4 not both zero such that
1 1
(6.4) )\lfl(x) + )\Zfz(x) =0.

If besides fl’ f2 are twice differentiable, then
(6.5) )‘lfl (x)+k2f2(x)z 0.

Formulas (6.4) and (6.5) follow from well-known necessary con-
ditions for an x to be a local minimum at (6.3). Under additional
assumptions the sets of type (6.2) associated with (6.3) fulfill (6.1)
(4.

In the sequel, we shall assume that for an X in A1 n Az,

- e OIS e ke o - NS
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{6.0) fl(xo)/ 0, fz(.\o) 70
Then ther: will be a strictly positive \  such that

(6.7) fl(xo) L \fz(xo) -0

6.3 Theorem

Let AI,A7 satisfy (6.1) and be of the fcrm (6.2) where fl,f

2
are continuously differentiable.
Assume that an X, in Al n A2 satisfies (6.6).
. 1
Let ¢ be an isomorphism of ker fl(xo) X R onto X such that

{0, 0) = x Then there are neighborhoods W; of 0 in ker fi(x

0" o)

W2 of 0 in R and Q of XO in X and real-valued functions

0p 9 on ker fi(xo) such that Q = ((W1 X W2 ) and
{x:f(x)= 0} N Q=illy,r):r=gy), v e W}

The sets Al "~ Q, AZ N Q separate decisively, if and only if the multi-

function A:
(6.8) Ar=Wn {y: g)(y) - ¢, (¥) =1}
is metrically upper semicontinuous at 0.

Proof

It follows from 'Proposition 2.5 and from (6.6) that

1 1
Y - ker fl(x ker fz(x

o

a
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te {x:f(x)= 0} andto {x:L,(x)=0}. We

~hall renresent these two sets locally about Xy as functions on Y.
Let ¢ be anisomorphismof Y XR and X such that
} - {0, 0) = Xg° For a function f on X define f:YxXR-R by

~

(6.9) Hy,r)=1£ < i(y,r) -

The partial derivatives of f are

(6.10) ?;,(y, r)h = f'(«'(y, r)) = ih, 0)
L E(v,r)s = £ (iy, 1) = 40, 5)
If kerf(xy)=Y, then Fy'(o, 0)=0 and E(0,0)R=R. Consequently

([11 ; there are neighborhoods Wy of 0 in Y and w, of 0 in

R and a function o: W1 - W2 such that
(6-1) {ty,r) s v = o(y), vy e« Wi} = {(y,r): Ty,r) = 0} n(W; x W,)
The set (6.11) is the preimage by 4 of
{x:f(x)=0}NQ
where Q 1is a neighborhood of Xy If now 22 corrgspond to

f1 and f2 , then we may pick Wl, W2 and Q gcod for both the

functions.

By Lemma 4.1 the decisive separation of the sets A1 N Q and




and A2 N Q is equivalent to the same property of 4‘..1(1!&1 ~ Q) i"l(A, .

We may assume without loss of generality that gal(y) 2 <p2(y) fer v e W,

and consider the decisive separation of the sets

Cr=lnn:irz oM}IN WX W, G, = {(y,n):irs o, rw xw,.

1

The neighborhoods Q,WI,W2 might be chosen so that for

(v,r)e W ><W2

1
(6.12) ¢1(y) ~-r< 2dist ((y,r), Cl)

r- ‘?2(}’) & 2 dist ((Ya r)a Cz) .
Indeed, for (y,r) in W1 X W2 we have that

dist ((v,1), C))$ ¢y(y) - r
dist ((y,1),C,) $ 1 = ¢,(y) '

Thus

(6.13) dist ((v,r), Cy) +dist ((v,r), C,) 8 ¢,(Y) - ¢,(y)
The derivative of the function ¢ s

1 - t _1 . '
(6.14) 9,(v) = - v, qy))™ - E Ay, gly))

thus is continuous and vanishes at 0.

It follows that for all y,¥ in a neighborhood of 0 (say Wl)




TS mts amsrn  +

¢1(Y)‘ ‘Pl(;;) + ’ ’;;" Y‘ ;

~

Consequently, for v,y in W1

oy) - € l¢1(37)- el + 1y -vyi

= 2Ny @) -0+ 1F -y C

Therefore, if y 1isin W1 and wz(y)‘r ‘wl(y), then

\
(6.15) oy(¥) - 0,(r) % 2 [@tst(y, 1), Cy) +dist (y,7), C,)

On the other hand, (yr) isin C1 n CZ’ whenever y is in

A= {z t9y(2) - <p2(z) =0} and r= ¢y (2)- We have the estimates

2
dist (v, A) = dist (v, ), G, N C,) £ /dist® (v, A) + (oy(y) = 0, ()",

which together with (6.13) and (6.15) complete the proof.

6.4 Example

Assume now that, in addition to hypotheses of Theorem 6.3, the
functions fl, fz are twice continuously differentiable. In view of

Corollary 6.2 and Formula(6.6)there is \> 0 such that
1 K H
fl(xo) == fz(xo)
11 K "{
fl(xo) + fz.xo)z 0

We shall assume that thereisa k> 0 such that




. ' T 2 . ' )
(6.14) f)(h, h) + \fz(.\:ofh,h) >k h, he “orf( )

6.5 Prcposition

If formulac (6.1), (6.6) and (6.16) hold, then there is a neighbor~
hood Q of X0 such that the sets Al n Q and AZ N Q separate

decisively.

Proof.
In view of Theorem 6.3 we should prove that the multifunction (6.8)

is u.H.s.c at 0. Denote: Wy(y):= (pl(y) - QZ(Y), where Pp 9o are

those introduced in the previous proof. Using formula (6.14) we may compute

the second derivative of  of= op (pz)

o iy)(h,h) -

(6.17) = 3 €%, olyDh + Ty, 0v)) - ¢'9) - £y, olyp
(v, 0(y))

1 ~ 11 ~

- S {Gylv, elyNb, 1) + £y, (v - o (v)h)
fr( Ys ‘O(Y))

yr

Since Y - ker f'(x we have

o)

(6-18) ¢ (0)(h, h) = = L—— £(x )tith, 0), ith, 0))

£(x(0,1)

Therefore, by (6.7)




]

v
J

. M\,Q‘mﬁ

TR U Y NN G — (f’l'(xo)(h,h) + \f;(xo)(h,h)) h e ker f'(xo)
fl(xo){(o, 1)

(We identify (h, 0) with h). 1In view of our choice

(o] = 0,), fi(xo)((o,l) 70, henceby (6.16)
11t : ]Z
Y (0)h, h) = Kyl ihy!

Since U(0)- xy!(O) = 0, there is a neighborhood V of 0 in which

k

R S RN

The proof is complete.




7. Conclusion

condition for uniform lower semicontinuity. It applies to the multifunction

xu-l, when the first derivative vanishes (critical point). In similar cir-

cumstances first order conditions (by which we understand the Lusternik-

type conditions presented in Sections 2 and 3) cannot be used and

higher derivatives should be taken into account in establishment of semi-

continuity properties of multifunctions. It was pointed out in Section 6 that

higher order sufficient conditions are crucial in sensitivity theory, where

the nature of problems excludes applicability of first order conditions.
Another failure of first order conditions is illustratecd

in Example 3.3. Note that the discussed multifunction c! may be

represented as the intersection of two u.H.s.c multifunctions defined on

]R2 and valued in X, namely

G"l(r,rz) ={x:gx)=n} N {x:g,(x)=r1,} .

Again we face a problem of the metric upper semicontinuity of an intersecticn.
In a similar context a use of higher order conditions may turn out of
great value, when the usual constraint qualifications fail. This conclusion

may sound like an introduction to a study of higher order conditions for

semicontinuity. I hope to carry out such a study one day.
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